Pure Asymmetric Quantum MDS Codes from CSS Construction: A Complete Characterization

نویسندگان

  • Martianus Frederic Ezerman
  • Somphong Jitman
  • Han Mao Kiah
  • San Ling
چکیده

Using the Calderbank Shor Steane (CSS) construction, pure q-ary asymmetric quantum error-correcting codes attaining the quantum Singleton bound are constructed. Such codes are called pure CSS asymmetric quantum maximum distance separable (AQMDS) codes. Assuming the validity of the classical maximum distance separable (MDS) Conjecture, pure CSS AQMDS codes of all possible parameters are accounted for.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constacyclic Codes over Group Ring (Zq[v])/G

Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...

متن کامل

On Asymmetric Quantum MDS Codes

Assuming the validity of the MDS Conjecture, the weight distribution of all MDS codes is known. Using a recently-established characterization of asymmetric quantum error-correcting codes, linear MDS codes can be used to construct asymmetric quantum MDS codes with dz ≥ dx ≥ 2 for all possible values of length n for which linear MDS codes over Fq are known to exist.

متن کامل

Quantum Secret Sharing Schemes

Nascimento et al. [19] introduced a quantum information theoretical model for Quantum Secret Sharing (QSS) schemes. In this thesis, we describe existing schemes, such as the construction using Monotone Span Programs (MSPs) [16], according to this model. Moreover, the correctness of these schemes is proved in an information theoretical way. In particular, we consider the so-called pure state QSS...

متن کامل

Xing-Ling codes, duals of their subcodes, and good asymmetric quantum codes

A class of powerful q-ary linear polynomial codes originally proposed by Xing and Ling is deployed to construct good asymmetric quantum codes via the standard CSS construction. Our quantum codes are q-ary block codes that encode k qudits of quantum information into n qudits and correct up to b(dx−1)/2c bit-flip errors and up to b(dz−1)/2c phase-flip errors.. In many cases where the length (q2−q...

متن کامل

Quantum Codes from Two-Point Divisors on Hermitian and Suzuki Curves

Sarvepalli and Klappenecker showed how to use classical one-point codes on the Hermitian curve to construct symmetric quantum codes. For the said curve, Homma and Kim determined the parameters of a larger family of codes, the two-point codes. For the Suzuki curve, the bound due to Duursma and Kirov gave the exact minimum distance of Suzuki two-point codes over F8 and F32. Of more recent develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010